111 research outputs found

    Oxygen Transport in Carotid and Stented Coronary Arteries

    Get PDF
    Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation can have significant effects on the oxygen transport into the arterial wall. Helical flow has been theorised to improve the local haemodynamics and the oxygen transport within stented arteries. In this study an advanced oxygen transport model was developed to assess different stent designs. This advanced oxygen transport model incorporates both the free and bound oxygen contained in blood and includes a shear-dependent dispersion coefficient for red blood cells. In two test cases undertaken the results predicted by the advanced oxygen transport model were compared those predicted by simpler models, and in vivo measurements. Two other test cases analysed the predicted oxygen transport in three different stent designs, and the effects of helical flow on the haemodynamics and oxygen transport in stented coronary arteries. The advanced model showed good agreement with experimental measurements within the mass-transfer boundary layer and at the luminal surface; however, more work is needed for predicting the oxygen transport within the arterial wall. Simplifying the oxygen transport model within the blood produces significant errors in predicting the oxygen transport in arteries. It was found that different stent designs can produce significantly different amounts of hypoxic regions within the stented region. Additionally, helical flow increases the amount of oxygen transferred into the arterial wall, but only in a helical ribbon through the stented region that also experiences high wall shear stress spatial gradients

    Influence of calcium-binding salts on heat stability and fouling of whey protein isolate dispersions

    Get PDF
    peer-reviewedThe effect of the calcium-binding salts (CBS), trisodium citrate (TSC), tripotassium citrate (TPC) and disodium hydrogen phosphate (DSHP) at concentrations of 1–45 mm on the heat stability and fouling of whey protein isolate (WPI) dispersions (3%, w/v, protein) was investigated. The WPI dispersions were assessed for heat stability in an oil bath at 95 °C for 30 min, viscosity changes during simulated high-temperature short-time (HTST) and fouling behaviour using a lab-scale fouling rig. Adding CBS at levels of 5–30 mm for TSC and TPC and 25–35 mm for DSHP improved thermal stability of WPI dispersions by decreasing the ionic calcium (Ca2+) concentration; however, lower or higher concentrations destabilised the systems on heating. Adding CBS improved heat transfer during thermal processing, and resulted in lower viscosity and fouling. This study demonstrates that adding CBS is an effective means of increasing WPI protein stability during HTST thermal processing

    Theory and optimisation of radiative recombination in broken-gap InAs/GaSb superlattices

    Full text link
    We present a theoretical analysis of mid-infrared radiative recombination in InAs/GaSb superlattices (SLs). We employ a semi-analytical plane wave expansion method in conjunction with an 8-band k⋅p\mathbf{k} \cdot \mathbf{p} Hamiltonian to compute the SL electronic structure, paying careful attention to the identification and mitigation of spurious solutions. The calculated SL eigenstates are used directly to compute spontaneous emission spectra and the radiative recombination coefficient BB. We elucidate the origin of the relatively large BB coefficients in InAs/GaSb SLs which, despite the presence of spatially indirect (type-II-like) carrier confinement, are close to that of bulk InAs and compare favourably to those calculated for mid-infrared type-I pseudomorphic and metamorphic quantum well structures having comparable emission wavelengths. Our analysis explicitly quantifies the roles played by carrier localisation (specifically, partial delocalisation of bound electron states) and miniband formation (specifically, miniband occupation and optical selection rules) in determining the magnitude of BB and its temperature dependence. We perform a high-throughput optimisation of the room temperature BB coefficient in InAs/GaSb SLs across the 3.5 -- 7 ÎŒ\mum wavelength range, quantifying the dependence of BB on the relative thickness of the electron-confining InAs and hole-confining GaSb layers. This analysis provides guidance for the growth of optimised SLs for mid-infrared light emitters. Our results, combined with the expected low non-radiative Auger recombination rates in structures having spatially indirect electron and hole confinement, corroborate recently observed high output power in prototype InAs/GaSb SL inter-band cascade light-emitting diodes.Comment: Published versio

    Gastric aspiration and its role in airway inflammation

    Get PDF
    Gastro-Oesophageal Reflux (GOR) has been associated with chronic airway diseases while the passage of foreign matter into airways and lungs through aspiration has the potential to initiate a wide spectrum of pulmonary disorders. The clinical syndrome resulting from such aspiration will depend both on the quantity and nature of the aspirate as well as the individual host response. Aspiration of gastric fluids may cause damage to airway epithelium, not only because acidity is toxic to bronchial epithelial cells but also due to the effect of digestive enzymes such as pepsin and bile salts. Experimental models have shown that direct instillation of these factors to airways epithelia cause damage with a consequential inflammatory response. The pathophysiology of these responses is gradually being dissected, with better understanding of acute gastric aspiration injury, a major cause of acute lung injury, providing opportunities for therapeutic intervention and potentially, ultimately, improved understanding of the chronic airway response to aspiration. Ultimately, clarification of the inflammatory pathways which are related to micro-aspiration via pepsin and bile acid salts may eventually progress to pharmacological intervention and surgical studies to assess the clinical benefits of such therapies in driving symptom improvement or reducing disease progression

    Methanosarcina play an important role in anaerobic co-digestion of the seaweed Ulva lactuca: metagenomics structure and predicted metabolism of functional microbial communities.

    Get PDF
    Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation

    Environmental Noise Mapping with Smartphone Applications: A Participatory Noise Map of West Hartford, CT

    Get PDF
    New England Noise-Con 2016: Revolution in Noise Control, Providence, Rhode Island, USA, 13-15 June 2016This paper reports on the second phase of an on-going study concerning the use of smartphone applications to measure environmental noise at the University of Hartford. This phase involved the development of two strategic noise maps of West Hartford town center: i) a standard noise map developed using traditional mapping techniques and ii) a participatory noise map utilizing smartphone-based measurement data (a citizen-science approach to noise mapping). The objective of the study was to assess the feasibility of developing a noise map using a citizen science based approach. Results suggest that smartphone applications can be used to collect environmental noise data and these data may be used in the development of a participatory noise map.Irish Research CouncilCollege of Engineering, Technology and Architecture Faculty Student Engagement Grant at the University of Hartford, USAFulbright Scholarshi

    Influence of particle size on the physicochemical properties and stickiness of dairy powders

    Get PDF
    peer-reviewedThe compositional and physicochemical properties of different whey permeate (WPP), demineralised whey (DWP) and skim milk powder (SMP) size fractions were investigated. Bulk composition of WPP and DWP was significantly (P < 0.05) influenced by powder particle size; smaller particles had higher protein and lower lactose contents. Microscopic observations showed that WPP and DWP contained both larger lactose crystals and smaller amorphous particles. Bulk composition of SMP did not vary with particle size. Surface composition of the smallest SMP fraction (<75 ÎŒm) showed significantly lower protein (−9%) and higher fat (+5%) coverage compared with non-fractionated powders. For all powders, smaller particles were more susceptible to sticking. Hygroscopicity of SMP was not affected by particle size; hygroscopicity of semi-crystalline powders was inversely related to particle size. This study provides insights into differences between size fractions of dairy powders, which can potentially impact the sticking/caking behaviour of fine particles during processing.ACCEPTEDpeer-reviewe

    Effect of pasteurisation and foaming temperature on the physicochemical and foaming properties of nano-filtered mineral acid whey

    Get PDF
    peer-reviewedFoaming can pose a major challenge during processing of acid whey (AW). In this study, nano-filtered mineral AW was collected from a commercial plant before (AW0) and after pasteurisation (AWpast; 75 °C, 15 s). Both AW samples were foamed at 21 °C and in addition, AWpast was foamed at 61 °C, corresponding to the temperature of in-plant foaming. Physicochemical, foaming, and surface properties of AW samples were compared. Foaming at 21 °C resulted in less pronounced foam characteristics for AWpast compared with AW0. Pasteurisation was found not to significantly affect physicochemical properties; however, interfacial kinetics during foaming were altered, which affected foaming behaviour. Foaming of AWpast at 61 °C produced more stable, “dry” foams. FTIR spectra confirmed the influence of protein unfolding at elevated temperatures on foaming, which was reversible upon cooling. This is significant as it gives processors a mean of controlling foaming through temperature control, where possible.Horizon 2020This research was performed under Marie Sklodowska-Curie Career-FIT Fellowship, Project Code MF20180049, organised by Enterprise Ireland. The project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No. 713654

    Imaging in Vascular Access

    Get PDF
    This review examines four imaging modalities; ultrasound (US), digital subtraction angiography (DSA), magnetic resonance imaging (MRI) and computed tomography (CT), that have common or potential applications in vascular access (VA). The four modalities are reviewed under their primary uses, techniques, advantages and disadvantages, and future directions that are specific to VA. Currently, US is the most commonly used modality in VA because it is cheaper (relative to other modalities), accessible, non-ionising, and does not require the use of contrast agents. DSA is predominantly only performed when an intervention is indicated. MRI is limited by its cost and the time required for image acquisition that mainly confines it to the realm of research where high resolution is required. CT’s short acquisition times and high resolution make it useful as a problem-solving tool in complex cases, although accessibility can be an issue. All four imaging modalities have advantages and disadvantages that limit their use in this particular patient cohort. Current imaging in VA comprises an integrated approach with each modality providing particular uses dependent on their capabilities. MRI and CT, which currently have limited use, may have increasingly important future roles in complex cases where detailed analysis is required

    LMSD: LIPID MAPS structure database

    Get PDF
    The LIPID MAPS Structure Database (LMSD) is a relational database encompassing structures and annotations of biologically relevant lipids. Structures of lipids in the database come from four sources: (i) LIPID MAPS Consortium's core laboratories and partners; (ii) lipids identified by LIPID MAPS experiments; (iii) computationally generated structures for appropriate lipid classes; (iv) biologically relevant lipids manually curated from LIPID BANK, LIPIDAT and other public sources. All the lipid structures in LMSD are drawn in a consistent fashion. In addition to a classification-based retrieval of lipids, users can search LMSD using either text-based or structure-based search options. The text-based search implementation supports data retrieval by any combination of these data fields: LIPID MAPS ID, systematic or common name, mass, formula, category, main class, and subclass data fields. The structure-based search, in conjunction with optional data fields, provides the capability to perform a substructure search or exact match for the structure drawn by the user. Search results, in addition to structure and annotations, also include relevant links to external databases. The LMSD is publicly available a
    • 

    corecore